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A fuzzy set overlay model is used to analyze the distribution of moulins (vertical meltwater conduits) on
Sermeq Avannarleq (“Dead Glacier”) in West Greenland in 1985 and 2008–09. Input data is derived from a
historical topographic map based on airborne visible imagery and more recent WorldView-1 panchromatic
imagery, as well as an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital
elevation model (DEM). A non-parametric best-fit model approach using a Monte Carlo simulation is used to
derive the membership functions for moulin location based on three independent variables – elevation, slope
and aspect – and to test for the robustness of the model. We determine that there is a topographic setting
independent of time that favors the development of moulins in this region. Using the membership functions,
and an optimal alpha cut derived for 1985, we could correctly predict the locations of ~88% of the moulins in
2008–09. The model accounts for increased surface melt in 2008–09 in comparison to 1985. Our results
demonstrate the potential of a fuzzy set based approach to improve models of ice sheet hydrology inWestern
Greenland, by providing more reliable spatial distributions of entry points of meltwater into the ice based on
remotely sensed datasets of the ice surface, which are readily available.
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1. Introduction

The Greenland and West Antarctic Ice Sheets are currently losing
more mass through meltwater runoff and iceberg calving than they
are gaining through snowfall, indicating they have a negative mass
balance (Alley et al., 2005; Rignot et al., 2008a,b; Velicogna & Wahr,
2006). Observations on the Greenland Ice Sheet (GrIS) suggest that it
is losing mass at a rate that has doubled over the last decade to 267±
34Gt/year for the period 2000–2007 (Rignot et al., 2008a). It is
believed that approximately 60% of the mass loss of the GrIS for the
period 2000–2008 occurred through iceberg calving, dominated by a
few outlet glaciers, while the remaining 40% is due to surface melt
runoff (Van den Broeke et al., 2009). Widespread acceleration has
been observed on outlet glaciers such as the Jakobshavn Glacier,
which doubled its velocity in the last 10 years. Glaciers and ice sheets
were long thought to respond slowly to climatic perturbations
(Hooke, 2005; Paterson & Cuffey, 2010); and the mechanisms by
which a warming climate could accelerate glacier flow on as short a
time scale as a decade, are not yet fully understood. Recent
acceleration of the Jakobshavn Glacier has been attributed to various
mechanisms such as meltwater-induced basal lubrication and
changes to the terminus geometry lead to a reduction in back-stress
(Howat et al., 2008; Joughin et al., 2008; Rignot & Kanagaratnam,
2006; Zwally et al., 2002). The basal lubrication mechanism requires
water to penetrate the ice and reach the bed through the englacial
hydrologic system (Catania & Neumann, 2010; Zwally et al., 2002).
Due to the fractured nature of the ice sheet, a large fraction of surface
meltwater generated at the surface enters the ice sheet through
crevasses and moulins (Fig. 1) and eventually reaches the glacier bed
(Catania & Neumann, 2010). Strong correlations between the timing
and rate of surface meltwater production and changes in ice velocity
on the GrIS (Colgan et al., 2011) substantiate this mechanism. Phillips
et al. (2010) suggested that meltwater flow through the englacial
hydrologic system can warm the ice, thus potentially affecting ice
rheology and ultimately flow velocity (Fountain et al., 2005).
Quantification of these mechanisms is important for predicting ice
sheet response to climate warming, and requires an improved
understanding of the water discharge through the englacial hydro-
logic system, which is in turn controlled by the spatial density of
water entry points (i.e. crevasses and moulins).

Moulins, nearly vertical conduits in the ice formed and maintained
by flowing water, are seasonally active features of the cryo-hydrologic
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Fig. 1. The Sermeq Avannarleq Glacier is located in Western Greenland (star). The two frames indicate the geographical locations of Figs. 6 and 7. The background is the 2009
Worldview Image used for locating moulins.
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system. They are usually found downstream of a crevasse field in a
relatively flat section of a glacier. Crevasse fields, which typically occur
in regions of high extensional strain near the surface precondition the
ice for moulin formation (Hooke, 2005). Even though crevasses may
close due to compression as they are advected downstream, the
thermal energy of meltwater and viscous heat generation allows
moulins to remain open (Holmlund, 1988). In order to predict moulin
locations from first principles using a physically based model, ice
stress and strain rates need to be calculated. This requires good
knowledge of ice velocity and basal topography, which are often not
readily available (Hooke, 2005). On smaller glaciers, moulins are
sometimes advected out of their catchments within a single year,
resulting in a “string of pearls” of abandonedmoulins, with new active
moulins forming upstream (Holmlund, 1988; Reynaud, 1987). In
Western Greenland, Catania and Neumann (2010) estimate average
moulin lifetimes of the order of 11 years, ranging even up to 44 years.
There is some evidence suggesting that the englacial network survives
throughout the winter, allowing meltwater to use the same englacial
channels and conduits for multiple years (Gulley & Benn, 2007).

The climate along Greenland's west coast has experienced above
average warming in the late 20th century. This has resulted in a rise of
the equilibrium line altitude by up to 350 m, increasing both the area
over which surface melt occurs and the total volume of meltwater
production (Fausto et al., 2009; Hanna et al., 2008; van den Broeke et
al., 2009). In a relatively large area of Western Greenland (60 N to 70
N), there is a systematic zonation of supraglacial hydrologic features,
with large lakes forming in the “dark zone” above 900 m elevation in
the 1990s, where ice exhibits less fracturing, slopes are flat (b2°) and
runoff generation rates are low (Greuell, 2000). The large ice
thicknesses in this region could also prevent hydrofracture propaga-
tion to the bed, which promotes moulin formation beneath supragla-
cial lakes. Downstream of the “dark zone”, runoff generation rates are
higher, and crevasses/moulins form in an elevation band that ranges
from 300 m to 800 m, with a width ranging from 70 to 150 km. In this
elevation band (hereinafter referred to as the “runoff zone”), moulins
typically do not occur in regions with significant crevassing. At lower
elevations, intense crevassing prevents the formation of moulins by
intercepting runoff. In this paper we focus on using an approach based
on remote sensing and surface observations to understand the
distribution and location of moulins within the runoff zone. Moulins
created due to episodic massive lake drainage events (Das et al., 2008)
in the dark zone are less common and not considered in this study.
Our approach does not incorporate information on physical processes
controlling crevasse formation, which is necessary for moulins to
form. In order to do so, a process-based model for calculating stresses
and strain rates would be required, which would in turn require high-
resolution bed topography data, which is seldom readily available. On
the other hand, high-resolution satellite imagery and DEMs are
becoming increasingly available, providing the first-order ice geom-
etry datasets used in this study. As noted above, there is an extensive
zone of the order of 105 0km2 in Western Greenland where moulins
are observed to occur.

This paper investigates the distribution of moulins in the runoff
zone of the Sermeq Avannarleq (just north of Jakobshavn Glacier) in
Western Greenland, in 1985 and 2008–09, using a fuzzy overlay
model driven by first-order local ice topography features (at ~100 m
scale). Our fuzzy overlay model is based on best-fit fuzzy membership
functions that are assigned using a non-parametric statistical
approach and Monte Carlo simulations, to compute membership
degrees for moulin occurrence as a function of the customary first-
order topographic variables: elevation, slope and aspect (the direction
of slope with respect to north=0). The reasons for our choice of
independent variables are as follows: (i) as noted above, moulins in
Western Greenland largely occur within an elevation band that we
have referred to as the runoff zone above; elevation is also a proxy for
surface meltwater generation; (ii) several studies (Holmlund, 1988;
Reynaud, 1987) suggest that moulins typically occur in regions with
low local slope downstream of crevasses, and (iii) aspect serves as a
proxy for incoming shortwave radiation by determining the extent to
which the slope is north-facing.

Our approach incorporates tests for the robustness of relations
between moulin presence and topographical characteristics that are
believed to be important factors for a moulin to form (Piccini et al.,
2002; Reynaud, 1987). Fuzzy overlay analysis is carried out to
determine locations of highest likelihood for moulin occurrence by
combining the explanatory topographic factors using different fuzzy
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logic operators in a spatial model framework. We derived the fuzzy
membership functions based on moulin locations and topographic
features for 1985. Subsequently, we apply these membership
functions to determine moulin locations in the increased area
experiencing melt in 2008–09. We compare the predicted moulin
locations for 2008–09 toWorldView imagery detections as well as the
surface drainage system derived from the 2008 ASTER DEM to
demonstrate the robustness of our approach. The fuzzy logic model
exhibits great potential for use in estimating evolving moulin density
in the ablation zone of the Greenland Ice Sheet, an important first step
in constraining hydrologic inputs that can influence accelerated flow
and cryo-hydrologic warming.

2. Fuzzy sets and imprecise phenomena

Fuzzy logic is a formofmulti-valued logic that dealswith reasoning,
which is approximate rather than precise and is based on fuzzy set
theory (Zadeh, 1965). Fuzzy set theory is appropriate where there is
inherent vagueness in the boundary conditions between classes (i.e.
the wet to dry snow classification spectrum; Key et al., 1989) or in the
definition of a class if the phenomenon or process of interest is ill
defined (i.e. moulin development). Fuzzy set theory, in combination
with geospatial analysis, has been applied to a wide range of problems
including soil mapping (Burrough, 1989; McBratney & Odeh, 1997),
terrain modeling (Deng & Wilson, 2008; Fisher et al., 2004),
cartographic generalization (Anderson-Tarver et al., 2011), land
cover change (Leyk & Zimmermann, 2007), land use analysis (Fritz &
See, 2005), landscape ecology (Bolliger & Mladenoff, 2005) and basal
glacier hydrology (Corne et al., 1999). There has been no previous
quantitative study on the spatial distribution of moulins on an ice
sheet. Due to the inherent uncertainty in characterizing/predicting
moulin locations, fuzzy set theory represents an appropriate approach
for this problem.

Unlike in classical set theory where according to the Boolean
approach an object is either a member of a class or not, fuzzy sets
account for partial membership and/or multiple memberships to
different classes (Zadeh, 1965). For example, using fuzzy set theory,
the same location can be classified as wet snow to a certain degree as
well as ice to a certain degree, whereas a Boolean classification would
classify it as either snow or ice despite both appearingwithin the pixel
in question. The phenomenon of multi-memberships in this instance
results from non-crisp transitions between the classes of water, wet
snow and ice. A pixel in an image is not necessarily covered only by ice
but can also include some area proportion covered by snow (Key et al.,
1989). Fuzzy set theory allows each element of interest to be assigned
degrees of membership in a fuzzy set on a gradual scale in the real unit
interval [0, 1] using fuzzy membership functions. The definition of
membership functions can be based on standard function types
(Robinson, 2003) or determined from data using the Semantic Import
(SI) model (Robinson, 1988). Fuzzy sets generalize classical (Boolean)
sets, since the indicator functions of classical sets are special cases of
the membership functions of fuzzy sets, if the latter only take values
0 or 1 (Dubois & Prade, 1988). For this reason classical Boolean sets are
referred to as “crisp” sets.

In our present study, fuzzy logic is used to predict potential moulin
locations. Similar to other objects with non-distinct boundaries, such
as clouds, moulins can only be understood in the context of
underlying conditions— in this case for terrain and water availability.
While there is some agreement on what defines a moulin (Holmlund,
1988; Piccini et al., 2002; Reynaud, 1987) the distribution of moulins
and the topographic factors that influence moulin development have
not been mathematically quantified. This lack of knowledge of the
influences of terrain and meteorological variables on moulin
development, as well as the interactions of these independent
variables, inhibits the prediction of moulin development locations
using classical set theory. Thus, the likelihood of moulin development
at a location represents an imprecisely defined phenomenon, for
which a fuzzy logic model is ideally suited.

3. Field site and data

The study site for this investigation is the ablation region of
the Sermeq Avannarleq (“Dead Glacier”) drainage basin in West
Greenland, located just north of Jakobshavn Glacier. The runoff zone
in this region shows steeper overall surface slopes than the dark zone
(N4° versus b2° respectively) (Greuell, 2000). Within the runoff zone,
moulins typically form in locations that exhibit relatively low surface
slopes that allow the concentration of runoff (Holmlund, 1988). The
drainage basin is approximately located at 69°25′ N and 49°55′ W
(Fig. 1). The glacier snout is at 69°22′ N and 50°25′W, where it calves
icebergs into a side arm of the Jakobshavn Fjord. The study area is an
approximate rectangle of 750 km2 (30 km×25 km). The Sermeq
Avannarleq has experienced a negative mass balance beginning in
1985, with a maximum retreat of the terminus of 2 km over the last
26 years (Colgan et al., 2011).

The Greenland Geological Survey (GEUS; Thomsen, 1986;
Thomsen et al., 1988) has compiled a 1:75,000 supraglacial
hydrology map of the Sermeq Avannarleq ablation zone based on
panchromatic aerial photography obtained on 10 July 1985. This
map delineates features such as crevasse fields, surface lakes and
rivers as well as moulins. A total of 318 moulins were identified
within the map extent. Unfortunately, neither the map nor the
supporting documentation (Thomsen, 1986) indicates the criteria
or methodology used to identify the moulins. Our own field
observations, conducted in August 2008 and 2009, and supplemen-
ted with an ~55 cm panchromatic WorldView-1 image acquired on
15 July 2009, suggest that the GEUS map likely only identifies
moulins with a diameterN1 m. From field observations we estimate
that up to 5 times as many unidentified moulins of much smaller
diameter (i.e. b1 m) exist within the map area, possibly clustered
around the larger moulins identified in the GEUS map. The GEUS
supraglacial hydrology map was scanned and georectified in a
Geographical Information System (GIS). Moulin locations (318 in
1985) and ice elevation contour lines (equidistance of 10 m; from
0 to 1180 m elevation; point spacing of ~250 m) were manually
digitized. The digitized elevation points (total of 9306) were
interpolated using a minimum curvature spline technique to create
a digital ice elevation model (DEM) with a horizontal resolution of
125 m for the year 1985. The stated absolute vertical accuracy of the
GEUS map is ±30 m (Thomsen, 1986).

The moulin distribution across the study site was also examined
for 2008 using the latest available ASTER DEM (derived primarily from
2008 imagery). The ASTER global DEM has a horizontal resolution of
30 m with absolute vertical and horizontal accuracies of ±20 m and
±30 m, respectively. Three topographic variables – elevation, slope
and aspect –were extracted from the DEMwith a resolution of 125 m.
These variables were chosen as a first-order set of independent
explanatory variables for describing the potential for a moulin to form
at a given location, which represents the dependent variable in the
study.

4. Methods

Fuzzy logic, which has been conceptualized for vague geographies
by Fisher (2000), has recently been applied to combine spatial
variables (i.e., fuzzy overlay) to produce coherent final maps (Arnot et
al., 2004; Fritz & See, 2005). Zadeh (1965) proposed three basic
operators: (i) complement, (ii) union and (iii) intersection, which
have been extended and combined by various authors (Klir & Yuan,
1995; Yager, 1980). Robinson (2003) summarized fuzzy logic
operators that have been proven useful in analyzing spatial and
temporal variabilities using GIS and remote sensing technology.
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We assign fuzzy membership functions for the independent
variables (elevation, slope and aspect) based on iteratively simulated
subsets of the underlying data in order to assign the membership
degree of each pixel to the prototype concept of a perfect moulin
location. The resulting fuzzy surfaces are then input to a fuzzy overlay
procedure using fuzzy logic operators to model the likelihood for
moulin occurrence based on the described independent variables and
their interactions.

In order to statistically determine and justify the assignment of
robust membership functions for each independent variable, the
distributions in co-location with field-observed moulins in 1985 were
systematically examined and the three variables were tested for
independence so that no variable is over-weighted and no bias is
generated. The approach presented here consists of four steps:
testing the moulin distribution and the variables for independence
(Section 4.1), deriving the membership function for each variable
(Section 4.2), carrying out fuzzy overlay to produce a fuzzymembership
map (Section 4.3), and using appropriate alpha cuts (e.g. threshold
values defining a location as containing a moulin or not) to produce a
1985 categorical moulin likelihood map (Section 4.4). A second moulin
likelihood map was then produced for 2008 (Section 4.5).

4.1. Testing total and moulin-co-located distributions and independence
of variables

The histogram for the distribution of the moulin-co-located subset
of each independent variable was compared with the overall
distribution of that independent variable for the Sermeq Avannarleq
basin using the Wilcoxon-Rank Sum test to ensure that the
distribution of underlying moulin locations is different from the
total distribution (Montgomery & Runger, 2006).

Rather than using the absolute distribution of occurrences we
calculated the frequency per bin of occurrences, which is the number
of moulins observed for a specified range of values of variable x (i.e.,
which belong in a particular bin) divided by the total number of
observations of values x in that bin. For example if moulins occurred
on 4 pixels of a given bin, and a total of 10 pixels across the study site
are in that bin, the frequency per bin would be 0.4. We tested for
correlation between independent variables in order to assure that
they were truly independent, to avoid model bias due to co-linearity
(Montgomery & Runger, 2006).

4.2. Deriving non-parametric best-fit membership functions

We derived best-fit functions for the histograms of the moulin co-
located subsets of the independent variables using Monte Carlo
simulations to robustly approximate the underlying distribution. This
processwas repeated 500 times using subsets of 150moulins randomly
picked for each of the iterations. To do so we used non-parametric
models since the frequencies of all independent variables followed non-
Gaussian distributions with multiple peaks. The use of Monte Carlo
simulation allowed us to test if different moulin-co-located subsets of
independent variables produce similarmembership functions and thus,
to statistically examine the robustness of membership assignment. In
Fig. 2 the distribution of the elevation (Fig. 2a), aspect (Fig. 2b) and slope
(Fig. 2c) is shown as box plots showing the variation and hence
robustness of each variable. The outliers are shown as circles. The
resulting membership functions quantify the relationship between
moulin occurrence (i.e., the possibility for a moulin to occur at a
location) and the independent variables as derived from the observed
moulin-co-located distribution. Fig. 2 clarifies the validity of the chosen
independent variables in controlling moulin occurrence. The likelihood
of moulin occurrence is highest for elevations in the range of 300–
800 m, which corresponds to the runoff zone. Aspect values around 55°
are most favorable for moulin occurrence. Closer examination revealed
that the river channels feeding most moulins are on south and
southwest facing slopes. Moulins form at topographic depressions at
the bottom of such slopes, extending slightly into the opposite slope,
where the moulin location is maintained at a lower elevation by
downcutting at very small scales. Moulin locations are also largely
concentrated in very low slopes (Fig. 2c).

We normalized the membership functions by stretching the mean
of the maximum frequency to unity and setting the minimum
frequency to zero (Fig. 2d–f). This step was done in order to describe
how favorable each location is for a moulin to develop. A location with
amembership function value of zero has no similarity with the perfect
conditions for a moulin to form. A location with a membership
function value of 1, however, is the perfect location for a moulin. The
normalized membership functions were included in the fuzzy overlay
model described in Section 4.3.

4.3. Spatial fuzzy overlay model

We carried out fuzzy overlay using fuzzy logic operators to model
for each pixel the possibility for a moulin to develop based on the
three independent variables and their interactions. Fuzzy operators
can be formalized as “intersection” (AND), which corresponds to the
limiting MIN operator, or “union” (OR), which is interpreted as the
MAX operator. Different versions of these fuzzy operators have been
described (Yager, 1995) and successfully applied in a GIS framework
(Robinson, 2003) and in remote sensing (Key et al., 1989).

Logical operators can be combined and adapted to model different
types of complex interactions between variables. For example,
intersection can be used to implement a limiting variable by assigning
the minimum membership value (logical AND operation) to the
overlay of this variable with one or more other variables. Alterna-
tively, the union operator can be used to combine variables that could
compensate each other (i.e., appear to have independent impact on
moulin development and hence only one of the two variables is
necessary for the moulin development) by assigning the maximum
value (OR operation). The result of fuzzy overlay operations is a new
fuzzy set represented as a spatial fuzzy surface.

We used the connective union operator (Yager, 1980) to overlay
the fuzzy surfaces of aspect (a) and slope (s) since these two factors
can be conceptualized as compensating variables that represent
proxies for ice flow direction and velocity. Hence, the variables a and s
are assumed to be independent drivers for moulin development
(Fountain & Walder, 1998; Piccini et al., 2002; Reynaud, 1987). In
Eq. (1) below, we denote the fuzzy membership function for aspect
(a) by A(a), and that for slope (s) as S(s). The connective union
operator is of the form:

A∨S = min Ap + Sp
� �1=p

;1
n o

: ð1Þ

Where p is the power number to be used to unify slope and aspect.
We used p=0.5 as suggested in Robinson (2003). ∨ is the logical
union operator.

We used the connective intersection operator (Yager, 1980) to
overlay the result of theunion of slope and aspect ((A∨S) in Eq. (2)with
the fuzzy set of elevation (E in Eq. 2 below), under the assumption that
elevation is a proxy for the mean annual temperature of the Greenland
Ice Sheet and hence for the amount of surface meltwater generated
(Cuffey & Clow, 1997). As noted above, at higher elevations (i.e. in the
dark zone), meltwater generation is insufficient for moulins to form.
Additionally, the ice thickness is also potentially too large for
hydrofracturing to occur. Although sufficient meltwater is generated
at the margin (lowest elevation), heavy crevassing prevents the
formation of moulins. Thus, there is an intermediate range of elevation
(previously defined as the runoff zone)wheremoulins aremost likely to
occur. Consequently elevation is implemented as a limitingvariable. The
connective intersection operator allows tuning of the power function



Fig. 2. (Left): Box plots for the number of moulins/km2 as a function of elevation (a), aspect (c) and slope (e). (Right) Individual membership functions for all 500 Monte Carlo
simulations (green) and their average (red), which was used as the membership function. The average membership functions were normalized in such a way that the minimum
value was set to zero and the mean of the maximum was set to 1.
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and hence the integration of non-linear dependency of the relationship,
with the form:

C a; s; eð Þ = A∨Sð Þ∧E = 1� min 1� A∨Sð Þð Þp + 1� Eð Þp� �1=p
;1

n o
:

ð2Þ

In Eq. (2) (A∨S) is the fuzzy union of slope and aspect (see Eq. 1)
that is intersected with the fuzzy set of elevation E and p is the power
number in order to describe non-linear relationships. The result is a
tri-variate membership function C(a, s, e) that ranges from 0 to 1, and
may be used to evaluate the likelihood of moulin occurrence at a given
location.

4.4. Mapping moulin occurrence likelihood in 1985

The fuzzy surfaces are used to create likelihood maps, indicating
for each pixel the level of likelihood for moulin development. In order

image of Fig.�2
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to define crisp categories of likelihood we carry out a defuzzification
mainly to accommodate better interpretation of the results for users
who are used to explore risk zones as crisp entities. This process is
based on a cutoff value, which is referred to as the alpha cut.

The fuzzy surface of (A∨S)∧E, i.e. the tri-variate function C(a, s, e),
is the result of overlaying aspect a, slope s and elevation e at each grid
cell. If C(a ,s, e)Nα (alpha cut value 0≤α≤1) it is assumed that a
moulin occurs. Hence each pixel, which is assigned a membership
degree equal to or greater than the alpha cut is included in the
considered likelihood category. The assignment of the alpha cut value
represents an important decision in the cartographic presentation of
the results and can potentially affect the outcome of the analysis
(Robinson, 2003).

A low alpha cut will include a large percentage of field-observed
moulins correctly classified as moulin likelihood areas. A low alpha
cut value, however, also overestimates the area in which moulins are
likely to form. Conversely, a high alpha cut value will result in a lower
number of moulins correctly being identified, as well as a smaller total
area of high moulin likelihood. In order to identify the areas of
transition between low and medium and medium and high likelihood
we tried to find the range of alpha cuts in which the percentage of
moulins being classified correctly decreases rapidly. Areas of
membership degrees greater than the upper boundary of the
transitional class are considered “high likelihood” areas, whereas
values less than the lower boundary are classified as “low likelihood”
areas.

The lower boundary and upper boundary are selected by means of
comparing the change in the number of correctly classified moulins as
a function of the alpha cut value. When plotted in a cumulative curve
plot, where 0 represents no moulin and 1 describes definite moulin
occurrence, 100% of the field-observed moulins and all pixels in the
study area are expected to be included if the alpha cut is set to zero.
Conversely most moulin locations and pixels in the study area would
be classified as no likelihood areas if the alpha cut was close to 1. If the
cumulative curve transitions from 0 to 100% membership within a
small range of alpha cut values, the system is considered to be crisp
and selecting an appropriate alpha cut is an easy task. In the case of a
smooth transition over a broad range of fuzzy membership values, the
selection of an alpha cut is more difficult and is an issue frequently
encountered in constructing fuzzy classification schemes for natural
phenomena (Arnot et al., 2004). In general the medium likelihood
level represents a class of possible transition (high variation in
membership values) to low or high likelihood in which the class-
specific area can change drastically for even small changes in the
alpha cut.

4.5. Mapping moulin locations for 2008–09

In order to create a moulin likelihood map for the years 2008–09,
we used membership functions derived for 1985 and applied them to
the resampled ASTER 2008–09 DEM at the same resolution of 125 m.
First, the moulin locations extracted from the ASTER DEM were
validated based on two sub-regions (identified with boxes in Fig. 1)
from the WorldView-1 Imagery for 2009 and field observations from
2006 to 2008 (which confirmed that moulin locations remain at more
or less the same location for a few years). These two subregions cover
only 7–8% of the overall region of interest. Due to the lack of adequate
imagery, the above approach could not be applied over the entire
study area. Outside of the two sub-regions mentioned above, we
derived the moulin locations for 2008–09 using the surface runoff
accumulation model offered in ESRI ArcGIS (Tarboton et al., 1991),
which calculates the catchment size for each pixel based on elevation
and flow direction (steepest slope).

We first attempted to correlate moulin locations in 1985 with
surface runoff accumulation. Using the estimated surface mass
balance for the Sermeq Avannarleq and the catchment areas for
each moulin in the late 1980s (Thomsen et al., 1988), we were able to
calculate the approximate total volume of water available at each
moulin location in 1985. We found that moulins were statistically
almost never observed in pixels that drain a runoff volume lower than
450,000 m3/year. We thus used this value as a threshold to prescribe
moulin locations for 2008–09. Establishment of a hydrologic connec-
tion to the glacier bed through a crevasse by hydrofracturing is
typically determined by the background tensile stress, ice thickness
and availability of surface meltwater (van der Veen, 2007). Between
1985 and 2007, all these factors are likely to have changed
significantly. However, van der Veen (2007) also shows that the
water-filling rate is the most important factor controlling crevasse
propagation. For this reason, and also because we are exploring an
approach based on readily available topographic information, we
believe that our use of the threshold runoff volume of 450,000 m3/
year for 2008–09 is reasonable. The Sermeq Avannarleq surface
ablation (meltwater production) rates presented in Fausto et al.
(2009) were used to calculate the melt volume generated at each
pixel in 2008–09. Surface runoff accumulation was then calculated
over the entire study area, including higher elevations that did not
experience melt in 1985. Moulins were assumed to occur in pixels
where the surface runoff accumulation exceeded 450,000 m3/year,
and a proxy dataset of potential moulin locations in 2008–09 was thus
created. The moulin surface likelihood predicted by the membership
functions was then compared to the above proxy dataset in order to
account for the regions, which had experienced melt for the first time
between 1985 and 2008–09 and thus relaxing the elevation
constraint.

5. Results

We analyzed the percentage of all moulins correctly estimated in
moulin likelihood zones for each alpha cut between 0.2 and 0.9 at
intervals of 0.1 (Fig. 3). As suggested in Section 4.4, the total area
considered as at moulin likelihood decreases with increasing alpha
cut value for 1985. According to Fig. 3a the entire ablation zone is at
moulin likelihood for an alpha cut of 0.2. This does not reflect the
reality that moulins are sparse features, as a lack of surface meltwater
or limited catchment area makes certain locations unsuitable for
moulin formation. For high alpha cut values (e.g., 0.8 and 0.9) (Fig. 3g
and h) the area of the likelihood zone decreases to a very small area,
which is also not realistic as moulins are found throughout the
ablation zone. This quantitative comparison (Fig. 3a–g) illustrates the
need for an in-depth analysis of the distribution of moulins as a
function of the alpha cut level.

Fig. 4 shows the distribution of pixels and moulin-containing
pixels with different membership values of C(a, s, e) for the ablation
zone of the Sermeq Avannarleq in 1985. Most of the pixels correspond
to low C(a, s, e) values between 0 and b0.4. However, none of these
pixels contain moulins. The number of pixels with high membership
values is very small. The mean value of the membership function for
the entire ablation zone is 0.31. The number of pixels containing
moulins is a small fraction of the total number of pixels. Moulins are
found in pixels with C(a, s, e)N0.4, and the highest number of moulin-
containing pixels correspond to C(a, s, e)≥0.7. For this reason a more
detailed version of Fig. 4a for C(a, s, e)≥0.65 is shown in Fig. 4b. The
mean C(a, s, e) value for the extractedmoulin locations in 1985 is 0.66.
Fig. 4c shows the fraction of pixels in each C(a, s, e) class that contain
at least one moulin. The use of C(a, s, e) as a membership function for
identifying moulin locations is justified by the fact that almost all
pixels with C(a, s, e)≥0.95 contain moulins. However, because the
number of pixels with such high values of C(a, s, e) is rather small
compared to the overall number of pixels, it is also clear that using an
alpha cut value of 0.95 would severely underestimate moulin
locations. Fig. 4c suggests that it is reasonable to divide the range of
membership values into three sections by using two break points that



Fig. 3. Defuzzification result to classify moulin likelihood (red) and non-likelihood (blue) across the study area for alpha cuts ranging from 0.2 to 0.9 is shown in figures a)–h).
Figure j) shows the fuzzy membership map for the ablation zone of the Sermeq Avannarleq glacier for 2008. The likelihood/non-likelihood maps are based on this fuzzy membership
map.
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differentiate low (C(a, s, e)b0.4), medium (0.4≤C(a, s, e)≤0.8) and
high (C(a, s, e)N0.8) likelihood classes. Locations in the ablation zone
with C(a, s, e)b0.4 have a probability of less than 3% of containing a
moulin, while locations with C(a, s, e) values between 0.4 and 0.8 have
a probability of between 15% and 32% of containing a moulin, and
locations with a value of C(a, s, e)≥0.8 have a probability of between
57% and 96% of containing a moulin.

We defined the likelihood classes in 2008–09 based on the same
alpha cuts that were derived for 1985 (0.4 for low likelihood and 0.8
for high likelihood). As a result, 90% of the moulins of the year 2008–
09 were located within the medium or high likelihood areas; 41%
were located within the high-likelihood area (Fig. 5). There is little
variability in the percentage of moulins correctly classified for alpha
cuts less than 0.4 and greater than 0.8 (Fig. 4c), which provides
evidence that the break points 0.4 (90%) and 0.8 (41%) are robust.

In the two sub-regions in Figs. 6 and 7, where actual moulin
location data are available, the fuzzy membership function predicts
634 moulins, while the observations indicated 441. Of the 441
observed moulin locations, the membership function correctly
predicted 88.2%. As noted in Section 4.5, moulin locations over the
entire region of interest were prescribed using a surface runoff
accumulation model to create a proxy dataset. The moulin locations
predicted by the membership function were compared to the proxy
data. We predicted a total number of 3124 moulins for 2008–09
(Fig. 5). This is approximately ten times the number of moulins
observed in 1985. Themembership function also predicted moulins at
higher elevations for 2008–09 than for 1985 (maximum elevation X
versus Y respectively). This is likely due to an upwardmigration of the
equilibrium line altitude and an accompanying expansion of the area
where surface meltwater is generated (Fausto et al., 2009). In
addition, an increased number of moulins were predicted in lower
regions of the ice sheet in 2008–09 as compared to 1985. These
moulins were probably not recognized in 1985 because of their
smaller dimensions, or they could have formed since 1985 because of
increased surface melt. Despite an increase in crevassed area within
the Sermeq Avannarleq ablation zone between 1985 and 2009 of 13±
4% (Colgan et al., 2011), the number of supraglacial river networks
seemed to have increased. The areal extent of each individual
catchment has decreased, however the amount of meltwater
generated in each catchment has increased, such that there is enough
water available to sustain more moulins. The membership function
correctly predicted more than 90% of the moulin locations indicated
by both real data (in the two sub-regions) and proxy data (full
region).

A closer inspection of predicted and verifiedmoulins in 2008–09 in
sub-regions where WorldView-I imagery is available shows that the
moulins seem to form at the edge of patches of medium and high-
likelihood areas (Fig. 6). If the ice flow direction is taken into account
one can see that most of the verified moulins are located at the
upstream edge of the high-likelihood areas. We calculated an average
of 12 moulins/km2, with a maximum value of 27/km2 for 2008–09.
The density of moulins, however, varies greatly: there are fewer
moulins at high elevation (i.e. the accumulation zone) and in steep
terrain (i.e. near the ice margin due to the presence of crevasses and
poorly defined drainage basins).

Fig. 7 shows a subregion of the Sermeq Avannarleq ablation zone,
with the moulin likelihood categories overlain by the 2008–09 ASTER
derived water accumulation flow channels (in blue). The dark red
areas represent high likelihood for moulin development (alpha
cut=0.8), the orange areas medium likelihood (alpha cut=0.4)
and the remaining green areas low likelihood. Large channel networks
tend to form mainly in low-likelihood areas. However, most of these
channel networks terminate in medium or high-likelihood areas,
corresponding to potential moulin locations.

image of Fig.�3


Fig. 4. (a) The histogram for the number of pixels for each membership (C(a, s, e)) value in the ablation zone. Blue bars correspond to all pixels and red bars indicate moulin-
containing pixels. (b) Blow up of the dashed rectangle in (a) to accentuate the portion of interest with significant moulin occurrence. (c) Probability of moulin occurrence (# moulin
containing pixels divided by total # pixels) as a function of C(a, s, e). Although not shown, several pixels with C(a, s, e)N0.7 contain more than one moulin. Specifically, clusters of up
to 5 moulins per pixel were encountered with C(a, s, e)~0.8.
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6. Discussion

The fuzzy logic approach described here represents an encouraging
first attempt to model the likelihood of moulin occurrence and the
spatial distribution of moulins in theWestern Greenland ablation zone.
The three independent variables employed in this study are commonly
Fig. 5. The modeled moulin likelihood classes (high, medium, lo
used for simple parameterizations in topographic spatial analysis. This
first-order modeling attempt aims to further the understanding of
where moulins occur, and hence the locations where water can
potentially reach the glacier bed and cause lubrication. Quantifying
this process is important for constraining physically based ice sheet
models. However, the topographic variables chosen here do not
w) for 2008–09 overlain by the extracted moulin locations.

image of Fig.�4
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Fig. 6. Blow up of the southern most regions showing the moulin likelihood and the moulin locations for 2008. Note that the extracted moulins seem to form at the upslope edges of
medium and high likelihood areas. The black arrows indicate the main flow direction.
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explicitly represent the physical processes involved in moulin develop-
ment. The present model does not rely on any basal topography or
process-basedmodeling to calculate extensional strain rates that would
enable the identification of crevassed areas that precondition ice for
moulin formation downstream of crevasse fields.

Our results suggest that the fuzzy overlay operation and its 1985
membership function C(a, s, e) remain valid for the quantification of
moulin likelihood at later points in time, such as in 2008–09 when
different data sources are used (e.g., ASTER DEM rather than GEUS
DEM). The 2008–09 model easily accommodates increases in surface
meltwater generation by using a critical meltwater volume necessary
for moulins to develop calculated from the 1985 data.

Despite the difficulty of quantifying the accuracy of the model, we
have been able to demonstrate the robustness of fuzzy membership
functions for all variables (Fig. 2). Using subsets of the moulins in a
Monte Carlo simulation we have been able to demonstrate that the
Fig. 7. Flow channels of the surface melt water run-off network (blue) run through or
form in areas of low moulin likelihood. Many of these channels however terminate in
the medium (orange) and high likelihood regions (red).
distribution of moulins is not purely due to chance but is, at least,
partially determined by the independent first-order local topographic
variables. While we have validated this approach for the Sermeq
Avannarleq region, a more extended validation of this methodology in
different regions of the Greenland Ice Sheet runoff zone is warranted.
This study focused on a first-order approach that has been able to
demonstrate that moulins do not occur at random from a statistical
point of view and those simple topographic variables and fuzzy sets
allow locating areas of particularly high likelihoodofmoulin occurrence.

An absolute accuracy assessment of the model cannot be
performed, as the total number of moulins and their absolute
identification accuracy are unknown in both 1985 and 2008–09. The
discrepancy in the total number of modeledmoulin locations between
1985 and 2008–09 may indicate that only a subset of moulins was
mapped in 1985. This could represent a possible reason for a model
bias and result in different optimal membership functions. However,
the presented approach was successful in predicting areas of high and
medium moulin likelihood, and hence the locations where the water
most likely penetrates the ice. Such an approach can help to quantify
associations between changes in the topography of the runoff zone in
Western Greenland (surface elevation, aspect and slope) in response
to projected climate warming andmoulin discharge to the glacier bed.
Although our overall approach successfully identifies nearly 90% of
the moulin locations, there is room for improvement. Fig. 5 and the
close up Fig. 6 illustrate the high frequency of moulins along the
upslope edges of themedium and high-likelihood areas. This indicates
a strong influence of ice flow direction on the locationswheremoulins
develop, which is not accounted for in our model. Future research will
seek to enhance the presented approach by incorporating such
higher-order topographic information. It is also important to develop
numerically complex approaches for incorporating information/
proxies on physical processes controlling moulin initiation. For
instance, crevasse propagation and moulin occurrence are also
influenced by ice stress and strain history, which can only be included
into a moulin location model via a lagrangian scheme to trace the
downstream advection of preconditioned ice.

7. Conclusions

We developed amodel based on fuzzy set theory to predict moulin
locations on the Sermeq Avannarleq in Western Greenland using
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three common topographic independent variables. The model was
able to correctly identify 92% of the moulin locations in a 1985
training dataset. In two sub-regions where precise data on moulin
locations was available for 2008–09, the model correctly predicted
slightly fewer than 90% of the moulins. We also showed that rather
than using crisp alpha cuts to delineatemoulin occurrence probability,
it is more appropriate to use a range of alpha cuts.
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